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ABSTRACT
This paper presents two different model-based approaches that use
multiple architecture description languages (ADLs) for automotive
system development. One approach is based on AADL (Archi-
tecture Analysis & Design Language), and the other is based on
collaborative modeling by SysML (Systems Modeling Language)
and MARTE (Modeling and Analysis of Real-Time and Embed-
ded systems). In this paper, the detailed modeling steps for both
approaches are explained through a real-world automotive devel-
opment example: a cruise control system. Moreover, discussion of
the modeling steps offers a qualitative comparison of the two ap-
proaches, and then clarifies the characteristics of the different types
of ADLs.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Design Tools and Techniques—
modules and interfaces

General Terms
Experimentation

Keywords
model-based development, automotive systems, architecture descrip-
tion languages, AADL, SysML, MARTE

1. INTRODUCTION
The electrical and electronic (E/E) component of automotive sys-

tems is continuously growing. For example, the ratio of the produc-
tion cost of E/E components to that of the other types of compo-
nents is expected to exceed 40% in 2015. In particular, the size of
software of E/E components is expanding exponentially, such that
the complexity of software has become a critical concern in effec-
tive automotive system development. In addition to development
efficiency, quality assurance for the software is another serious con-
cern, as was seen in several recalls occurred in the past.

For these reasons, several model-based approaches have attracted
considerable attention. As these approaches formalize system de-
signs, they might provide formal design verification of automotive
systems. These formal kinds of evidence have a potential to effi-
ciently constitute quality assurance cases.
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Figure 1: Classification of Architecture Description Languages.

This paper chooses architecture description languages (ADLs)
from among several modeling languages, and focuses on their prac-
tical application to the automotive domain. Specifically, two types
of approaches based on different ADLs are introduced. We will
explain how these approaches realize the development phases of
automotive system, and thereafter clarify their characteristics using
several example models.

2. ARCHITECTURE DESCRIPTION LAN-
GUAGES AND THEIR CLASSIFICATION

Architecture description languages (ADLs) have been widely stud-
ied across several research fields and industries. Medvidovic et
al. have already conducted an exhaustive survey of ADLs from
a purely technical point of view [1]. In contrast to previous re-
search [1], we performed our survey from a practical point of view.
The purpose of our survey is to find good candidates for applica-
tion to the automotive industry. In our survey, we collected more
than sixty ADLs from published research papers and project re-
ports, and briefly investigated each ADL. One result of our survey
is a classification of the collected ADLs, as shown in Fig. 1.

When considering the following features of automotive systems:
(1) large-scale systems, (2) real-time systems, (3) embedded sys-
tems; we found four promising candidates, shown as filled boxes
in Fig. 1. These candidates are AADL (Architecture Analysis and
Design Language) [2], SyML (Systems Modeling Language) [3],
MARTE (Modeling and Analysis of Real-Time and Embedded sys-
tems) [4], and EAST-ADL2 [5]. AADL is standardized by SAE In-
ternational (Society of Automotive Engineers). SysML and MARTE
are published by OMG (Object Management Group). EAST-ADL2,
which is not yet standardized, is an outcome of the ATESST (Ad-
vancing Traffic Efficiency and Safety through Software Technol-
ogy) project funded by an EU committee.

If we apply ADLs to real-world automotive system development,
we need to pay attention to the development aspect, in addition to
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Figure 2: Comparison of Design Phase Coverage of ADLs.
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Figure 3: Adaptive Cruise Control System.

the above system characteristics, such as (4) handling a great deal
of legacy code, and (5) distributed development including several
suppliers. On the contrary, EAST-ADL2 does not provide a bridge
between models and source code, and instead delegates this task
to AUTOSAR (AUTomotive Open System ARchitecture) [6]. This
fact can be illustrated by Fig. 2, which shows the ADLs correspond-
ing to each development phase1. Moreover, EAST-ADL2 is not yet
standardized; therefore, we cannot expect it to be widely adopted
among supplier companies. These facts imply that EAST-ADL2
is difficult to use for the purpose of real-world automotive system
development. Therefore, in considering the design phase coverage
of ADLs shown in Fig. 2, we can focus on the following two ap-
proaches: an AADL-based method (hereafter approach #1) and an-
other method based on the combination of the SysML and MARTE
(approach #2).

3. MODEL-BASED DEVELOPMENT USING
MULTIPLE ADLS

This section provides a detailed discussion of ADL-based devel-
opment steps via an automotive system example, specifically, an
adaptive cruise control (ACC) system. The ACC system provides
the following two major functions: (i) constant-speed cruise (CSC)
control, and (ii) constant-distance cruise (CDC) control. Figure 3
shows an outline of the ACC system. The Driving Support Com-
puter (DSC), which is an ECU (Electrical Control Unit), is the cen-
tral component of the ACC system. Thus, the software running on
the DSC is the main topic of this section.

In the following subsections, we will explain the software de-
velopment of the ACC system according to the two approaches, in
three steps: (i) System Modeling, (ii) Runtime Architecture Mod-
eling, and (iii) Code Generation (see Fig. 2).

3.1 Approach #1: AADL-Based System De-
velopment

3.1.1 System Architecture Modeling
The system architecture indicates system functions by combin-

ing logical components. Therefore, we can use the system com-
ponent of the AADL as a symbol for logical components. Figure 4
and Listing 1 show the same system architecture model using dif-
ferent notations, that is, textual and graphical. In this model, the

1The behavior aspect is intentionally ignored due to space limita-
tions.
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Figure 4: System Architecture Model in AADL.

system architecture ACCSystem.SysArch is described as the com-
bination of components such as the logical software component
(ACCSoftware.log) and the execution platform (DSCHardware).

The same model also defines the interfaces among the software
component ACCSoftware.log, the CAN bus (hs_can_bus_v1),
and the peripheral devices such as the skid control computer (SKID_-
CONT). The units of data exchanged among these components, e.g.,
kph_type (km/h), are also specified there.

Listing 1: System Architecture Model.
system ACCSystem
end ACCSystem;
-- System Architecture Model
system implementation ACCSystem.SysArch
subcomponents
-- Logical Software & Hardware Components
ACCSoftware: system ACCSoftware.log;
DSCHardware: system DSCHardware;
-- Peripherals
SKID_CONT: device devices::skid_control;
(snip)
connections -- CAN bus accesses
GC0000: data port SKID_CONT.s_speed->ACCSoftware.s_speed;
can_msg_v1_0000: bus access DSCHardware.hs_can_bus_v1
-> ACCSoftware.hs_can_bus_s_speed;
(snip)

end ACCSystem.SysArch;
system ACCSoftware -- Top-Level Software Component
features -- Interfaces with units
s_speed: in data port types::kph_type;
(snip)
end ACCSoftware;
-- Logical Software Component
system implementation ACCSoftware.log
subcomponents -- Logical Software Subcomponents
CSCSpeedCalculator: system csc_speed_calculator;
CDCSpeedCalculator: system csc_speed_calculator;
(snip)
end ACCSoftware.log;

3.1.2 Runtime Architecture Modeling
The runtime architecture of the software consists of physical

software entities such as processes and threads. Therefore, we
can straightforwardly use the process and thread components
for runtime architecture modeling. By combining these physical
entities and substantiating the interfaces in the software compo-
nent ACCSoftware, we can obtain the runtime architecture model
(ACCSystem.RunArch ), as shown in Listing 2 and Fig. 5. In the
listing, the AADL elements, extends and refined to, give an
inheritance mechanism and replace the logical software component
ACCSoftware.log by the physical one ACCSoftware.phy.

Figure 5 shows that there exists a single process that contains
six internal threads. Moreover, the runtime architecture model de-
scribes communication between threads (internal communication)
and between threads and CAN buses (external communication). If
we can determine real-time properties, e.g., the execution period
and execution time of threads, OSATE (Open Source AADL Tool
Environment) yields several kinds of analysis such as schedulabil-
ity analysis and end-to-end latency analysis.

Listing 2: Runtime Architecture Model.
-- Runtime Architecture Model
system implementation ACCSystem.RunArch
extends ACCSystem.SysArch
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Figure 5: Runtime Architecture Model in AADL (cf. Fig. 4).

subcomponents -- Logical Component -> Physical Component
ACCSoftware: refined to system ACCSoftware.phy;
end ACCSystem.RunArch;
-- Physical Software Component
system implementation ACCSoftware.phy
subcomponents
SoftwareProcess: process ACCSoftwareProcess;
end ACCSoftware.phy;
process ACCSoftwareProcess -- Single Process
features -- Interfaces
s_speed_in: in data port types::kph_type;
end ACCSoftwareProcess;
process implementation ACCSoftwareProcess.impl
subcomponents -- Six Threads
InputTask : thread input_controller_thread.impl;
CSCSpeedCalculatorTask: thread csc_sc_thread.impl;
(snip)
connections -- CAN Bus & Inter-Task Communication
GC0000: data port s_speed_in->InputTask.s_speed_in;
IC0000: data port InputTask.f_s_speed_out
->CSCSpeedCalculatorTask.f_s_speed_in;
(snip)

end ACCSoftwareProcess.impl;

3.1.3 Code Generation
We can derive source code templates from the runtime archi-

tecture model obtained in Sect. 3.1.2. For example, if we use the
OSEK/VDX-C platform [7], we can produce a configuration file in
OIL (OSEK Implementation Language) shown in Listing 3 and the
skeleton code shown in Listing 4. The AADL specification [2] it-
self contains the guidelines for translation from AADL descriptions
into source code. Moreover, a source code generator2 has been de-
veloped for some platforms. However, it should be noted that these
translations depend heavily on the platform used; that is, different
target platforms require different translation strategies.

Listing 3: Generated Configuration in OIL.
/* Tasks */
TASK InputControllerTask {
TYPE = BASIC;
/* Snip */
}
TASK CSCSpeedCalculatorTask{
TYPE = BASIC;
/* Snip */
}
/* Messages */
Message GC0000 { /* CAN Message (External Communication) */
TYPE = EXTERNAL;
ACCESSNAME = {s_speed, s_speed_in};
CAN_ADDRESS = {can_msg_v1_0000};
/* Snip */
};
Message IC0000 {/* Inter-Task Message (Internal Communication) */
TYPE = INTERNAL;
ACCESSNAME = {f_s_speed_out, f_s_speed_in};
/* Snip */
};

Listing 4: Generated Skelton Code of Tasks.
TASK (InputControllerTask) {
float l_s_speed_in = 0;
while(ReceiveMessage(GC0000, s_speed_in) == E_OK){
/*CAN Message (External Communication) */
l_s_speed_in = s_speed_in;}
/* Snip */
SendMessage(IC0000, f_s_speed_out) ;
/*Inter-Task Message (Internal Communication)*/
}
TASK (CSCSpeedCalculatorTask) {
float l_f_s_speed_in = 0;
while(ReceiveMessage(IC0000, f_s_speed_in) == E_OK){
l_f_s_speed_in = f_s_speed_in; }
/* Snip */

2http://penelope.enst.fr/aadl/
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Figure 6: System Architecture Model in SysML.
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}

In summary, AADL allows us to perform the following mod-
eling steps seamlessly: (i) system architecture modeling, (ii) re-
finement of runtime architecture models, and (iii) translation into
source code templates.

3.2 Approach #2: SysML / MARTE-Based Sys-
tem Development

3.2.1 System Architecture Modeling
The system architecture can also be described using the SysML

internal block diagram (IBD) whose stereotype is «block»3. Fig-
ure 6 shows the system architecture model in SysML. In the fig-
ure, we can find similar components to those of the AADL model
in Fig. 4. Due to space limitations, Fig. 6 only shows the logi-
cal software component ACCSoftwareLogical; however, the inter-
faces between the software component and its peripheral devices
are also described in the system architecture model. In the SysML
model, interfaces are defined with units by «flowSpecification»,
«flowProperty», and «ValueType» similarly to Listing 1.

3.2.2 Runtime Architecture Modeling
As shown in Fig. 2, SysML cannot describe the runtime archi-

tecture. On the other hand, MARTE is equipped with a sufficiently
wide vocabulary of elements to allow runtime architecture mod-
eling, e.g., «MemoryPartition» and «swSchedulableResource»
represent processes and threads, respectively. Thus, here we use
MARTE in a complementary way.

First, the top-level physical software component, which is a pro-
cess, is described using «MemoryPartition». The process model
inherits the interface definitions from the logical software compo-
nent in the system architecture. This can be depicted as shown in
Fig. 7 where the inheritance mechanism allows the process (ACC-
SoftwarePhysical) to inherit the interfaces from the logical soft-
ware component (ACCSoftwareLogical). Next, the top-level soft-
ware component (ACCSoftwarePhysical) is decomposed into sub-
components (threads), which can be represented by «swSchedu-
lableResource». Figure 8 shows that ACCSoftwarePhysical con-
sists of six threads, in the same way as shown in Fig. 5.

3«» indicates a stereotype.



Table 1: Comparison of Approaches #1 and #2.
Viewpoints Requirements of ADLs Approach #1: AADL Approach #2: SysML /MARTE Relevant Sections
(1) Large-Scale Systems Hierarchical Architecture System components can have a hi-

erarchical architecture.
«Block» can have a hierarchical ar-
chitecture.

Sects. 3.1.1 and 3.2.1

Compositional Architecture Component type definition provides
formal interface specifications.

«flowSpecification», «flowProp-
erty», and «ValueType» formally
define interfaces.

(2) Real-Time Systems Real-Time Properties Several properties such as deadline and execution time can be specified. Sects. 3.1.2 and 3.2.2

(3) Embedded Systems Software Architecture Both the logical and physical software architecture can be described. Sects. 3.1 and 3.2

Hardware Architecture (Execu-
tion Platform)

Several elements such as device,
bus, and processor are available.

HRM (Hardware Resource Model-
ing) of MARTE is available.

N/A

(4) Legacy Code Handling Code Generation Automatic /Manual Manual Sects. 3.1.3 and 3.2.3

(5) Distributed Development Open Standard SAE Standard OMG Standard Sect. 2

Seamless Refinement By extends and refined to. By the inheritance mechanism. Sects. 3.1.2 and 3.2.2

(6) High-Level Quality Assurance Formal Notation Specified by BNF (Backus-Naur-
Form).

Specified by UML Metafile. N/A

Formal Verification OSATE provides formal analyses,
e.g., schedulability analysis,

Not supported by a standard tool. Sects. 3.1.2 and 3.2.2

(7) Large-Scale Product Line Variability Modeling External specifications can be varied
using extends and internal specifi-
cations using refined to.

Only external specifications can
be varied using the inheritance of
«block».

N/A, but discussed in
[8].
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Figure 8: Runtime Architecture Model in MARTE (cf. Fig. 6).

Similar to the case of AADL in Sect. 3.1.2, we can add cer-
tain real-time properties. However, unlike the AADL model, there
does not exist any standard tool environments that can bring formal
analysis based on these real-time properties. Therefore, if we need
these kinds of analysis, we must translate the MARTE models into
AADL models that are analyzable by OSATE.

3.2.3 Code Generation
Similar to the method of Sect. 3.1.3, we can generate source code

templates from the runtime architecture model shown in Fig. 8. Un-
fortunately, unlike in AADL, no code generation guidelines or au-
tomatic code generators are available. Therefore, hand coding that
considers the target platform is necessary.

As is shown in Fig. 2, neither SysML not MARTE can cover all
the development phases of automotive systems by itself. However,
the above discussion shows that the combined use of SysML and
MARTE allows us to perform each step of model-based automotive
system development.

3.3 Comparison of Model-Based Approaches
Table 1 summarizes the qualitative characteristics of the two ap-

proaches. In addition to the five viewpoints mentioned in Sect. 2,
this table contains two additional viewpoints: (6) high-level quality
assurance (accountability to customers) and (7) large-scale product
line (variation handling).

The table shows that both approaches bring similar effects from
each viewpoint, except for the following three items: code genera-
tion, formal verification, and variability modeling. Based on these
criteria, approach #1 (AADL) is superior to approach #2 (SysML
and MARTE). Therefore, so far as these items are important to a
given development project, AADL is a better candidate than SysML
and MARTE. Otherwise, we can choose a suitable approach while

considering the information literacy of engineers who are involved
in a project.

4. CONCLUSION AND FUTURE WORK
In this paper we discussed ADL-based approaches to automo-

tive system development. We derived two different kinds of ap-
proaches: (i) an AADL-based method, and (ii) a collaborative mod-
eling method using SysML and MARTE. Detailed modeling steps
of each approach were explained through modeling trials based on
an ACC system. These trials also proved that both approaches can
cover similar phases of automotive system development. More-
over, by comparing the two approaches from multiple viewpoints,
we clarified the differences between the approaches, namely among
the three ADLs. The comparison also showed that both approaches
offer several different advantages to automotive system develop-
ment.

This paper focused on only the architectural aspects of automo-
tive systems due to space limitations. It is also necessary to perform
a wide-scope comparison of ADL-based approaches considering
their behavioral aspects.
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