
1

Model-based Emergent Middleware to
Meet the Challenges of Interoperability in

Pervasive NetworksPervasive Networks

V lé i I INRIAValérie Issarny, INRIA
Joint work with INRIA and CONNECT Project Colleagues

Special thanks to Amel Bennaceur, Nikolaos Georgantas, Rachid Saadi,
Gordon Blair, Paul Grace, P. Inverardi, R. Spalazzese

The FP7 ICT FET CONNECT Project
Overcoming the
interoperability challenge

f t d ’ d t ’of today’s and tomorrow’s
complex distributed
systems

→ A run-time model-centric
approach to eternal
interoperability

www.connect-forever.eu

2

2

Meeting the Challenge of Interoperability
in Pervasive Networks – Outline

Interoperability in complex distributed systems

Emergent middleware synthesis

The CONNECT architecture enabling emergent

middleware

Conclusions

3

A Few Words from Danny Cohen

In the beginning ARPA created ARPANET.
And the ARPANET was without form and void.
And darkness was upon the deep.
And the spirit of ARPA moved upon the face of the
network and ARPA said, 'Let there be a protocol,' and
there was a protocol. And ARPA saw that it was good.
And ARPA said, 'Let there be more protocols,' and it , p ,
was so. And ARPA saw that it was good.
And ARPA said, 'Let there be more networks,' and it
was so.

3

Distributed Systems Version by
Gordon Blair

In the beginning there was small scale experimentation.
And the experiments were without abstraction or openness.
And darkness was upon the deep.
And the spirit of the OMG moved upon the face of distributed
systems and said, 'Let there be a middleware standard,' and
there was a standard. And OMG saw that it was good.
And Microsoft said, 'Let there be more standards,' and it was so.
And Microsoft saw that it was good.g
And the community said, 'Let there be more networks and of
course also mobility, ubiquity and cloud computing for good
measure,' and it was so.....

…. but is it good?

Early distributed systems
• Limited in scale and heterogeneity
• Issues such as openness and support for QoS not a bigIssues such as openness, and support for QoS not a big

issue
Internet-scale distributed systems

• Large scale and significant levels of heterogeneity
(platforms, languages and middleware)

• Significant advances in supporting openness and QoS
Th l di t ib t d t f tThe complex distributed systems of tomorrow

• Significant increases in scale and also heterogeneity in all its
dimensions (cf. systems of systems); more dynamic; major
research questions concerning openness and QoS

4

Illustrating the challenges
Global Monitoring for Environment & Security

Interoperability Focus

Interoperability

Tanenbaum & Van Steen:
“the extent by which two

implementations of systems from
ff fdifferent manufacturers can co-

exist and work together by merely
relying on each other’s services as
specified by a common standard”.

5

Interoperability Challenges

The Simple Yet Challenging Photo Sharing Scenario

1. Discovery protocol interoperability
2. Interaction protocol interoperability
3. Data interoperability
4. Application interoperability
5. Interoperability of non-functional

properties

Any peer around?How may I get the picture?Is it a jpg file?May I get all the related pictures?Am I allowed to forward those pictures?

9

1. Discovery Protocol Interoperability

6

2. Middleware Protocol Interoperability

CORBA
Service (IIOP)

Web
Service Service (IIOP) (SOAP)

3. Data Interoperability
<photo>

<resolution> low </resolution>
<format> png </format>

</ h t >

<photo>
<resolution>

<value> 72x72 </value>
< it> DPI </ it>

<photo>
<resolution> low </resolution>
<format> png</format>

</photo>

photo(low, png)

</photo> <unit> DPI </unit>
</resolution>
<format> jpg</format>

</photo>

p

<photo>
<resolution> low </resolution>
<format> png</format>

</photo>

<picture>
<resolution> low</ resolution>
<filetype> png</ filetype>

</picture>

7

4. Application Interoperability

CORBA Client Calls:
• GetInformation(Photo) Resolution, Format

CORBA Server Interface
• GetResolution() Resolution
• GetFormat() Format

Client cannot interoperate with this service (even p (
when the underlying protocols and data match)
• Cannot easily standardise application interfaces

Approaches to Interoperability

1. A chosen shared
language

3. Auxiliary
Languages (e.g.

Esperanto)

2. One 3rd party
translator, e.g.,

English to French
translator

4. One speaker talks
the other’s language 5. Babel fish

8

Standards-based Approaches
1. A chosen shared

language

CORBA, Web Services, …
Everyone has to be aware of the same standard

Application Middleware

Peer

ApplicationMiddleware

Peer

No interoperation with alternative standards and protocols
New standard comes along ...

• Another interoperability problem…

Bridging

L L

2. One 3rd party
translator

SOAP2CORBA, …
Bridge must be deployed

3rd Party Peer (Infrastructure)

Legacy
Middleware

A

Legacy
Application

Peer

Bridge A to B Legacy
Application

Legacy
Middleware

B

Peer

Significant development effort
• For every protocol pair
• New protocol equals a bridge to every existing protocol

9

Transparent Interoperability
3. Auxiliary Language

Enterprise Service Buses (ESB), INDISS, …
Mapping to a common protocol

3rd Party Peer (Infrastructure)

Legacy
Middleware

Legacy
Application

Peer

Translation to
Intermediary

Legacy
Application

Legacy
Middleware

Peer

Translation
from

Intermediary

• Translation at either end – to/from the legacy or local protocol

Greatest common divisor problem
• Only have the subset of behaviour that matches between a pair

Interoperability Substitution
Platforms

4. One speaker talks the
other’s language

UIC ReMMoC WSIF

Application

Interoperability Platform

Substituted
Middleware

Legacy
Application

Legacy
Middleware

Peer Peer

Translation

UIC, ReMMoC, WSIF, …
One peer has to know in advance it will be a translator
• Knowledge of all potential protocols ...

10

We Want Future-Proof
Interoperability

Existing approaches to interoperability do not

5. Babel fish

Existing approaches to interoperability do not
work for distributed systems of tomorrow
• Fundamental re-think required
• Towards emergent middleware
• Can we observe, learn, synthesize and deploy a binding

dynamically?dynamically?

Monitor & Learn

CORBA
service

Web
Service

Monitor & Learn

Generated BINDING

Synthesize

Interoperability
Solution

Meeting the Challenge of Interoperability
in Pervasive Networks - Outline

Interoperability in complex distributed systems

Emergent middleware synthesis

The CONNECT architecture enabling emergent

middleware

Conclusions

20

11

Connecting Systems

21

Classifying Connection Mismatches

Syntactic

Mismatches

Data

Behavioral

Application-level
Business process\logic

Operation granularity

y

Semantic

Behavioral

Middleware-level

Coordination model (C/S, P/S, …)

Coordination model
instantiation

12

Application Mismatch Example

23

Middleware Mismatch Example

24

13

Mediation Connector aka
Emergent Middleware

25

D t I t f B h i

Interoperability facets

The Many Facets of Mediation

Application

Middleware

Data Interface Behavior

Interoperability
layers

Data/Semantic
Mediation

Process/Behavioral
MediationHow to make mediation connector emergent?

Network Listener/Actuator Synthesis

26

14

The Steps to Emergent Connection

Find each other aka dynamic
service/resource discoveryservice/resource discovery
Reason about interoperability ability in
terms of:
• Semantics matching
• Behavioral matching

Solve behavioral mismatches through
mediation

27

Finding Each Other in the
Heterogeneous World

Networked systems meet according to matching “Affordances”

Photo sharing
using SOAP

Photo sharing
using LIME

Photo sharing Photo sharing

28

“Affordance” behaviour is characterized
by its protocol and related ontology

from application down to middleware layer

“Affordance” behaviour is characterized
by its protocol and related ontology

15

Talking the Same Language:
The Key Role of Ontology

Ontology provides semantic grounding
• Includes a vocabulary of terms, and some specification of their

meaning

Photo sharing
using SOAP

Photo sharing
using LIME

Photo sharing Photo sharing

meaning
• Creates an agreed-upon vocabulary and semantic structure for

exchanging information about that domain

29

OPhoto

OSOAP
PP QQ

OPhoto

OLIME

Connection
matchmaking?

Talking the Same Language
The Key Role of Ontology

O OPh t

Aligned
Ontology

O
QQ

OPhoto
OPhoto

OSOAP

OPhoto

OLIME

OPhoto

O
OPhoto

O
Translation

PP
OMW

30

P’ Q’Translated
Protocols Interoperate?

OMW OMWSemantic &
Behavioral

matchmaking?

16

Networked System Model for
On-the-fly Connection

Interface definition leveraging Semantic Web
S i t h l iService technologies
• Affordance aka Capability

<Type, Concept, Inputs, Outputs>
• Interface signature

• Action defined as <Mdw, Application, I, O>
• Affordance behavior
• Non-functional properties

31

Reasoning about
Networked Systems Models

Ontologies to formalize the semantics
of affordances and actionsof affordances and actions

32

17

The Photo Sharing Ontology

33

Classified according to subsumption relationships

C/S Photo Sharing Interface

34

18

P2P Photo Sharing Interface

Interfacephoto_sharing = {
< Out, PhotoMetadata, ∅, < photoMetadata >>,
< Out, PhotoFile, ∅, < photoFile >>,
< Rdg, PhotoMetadata,< photoMetadata >, < photoMetadataList >>,
< Rd, PhotoFile, < photoID >, < photoFile >>,
< Rd, PhotoComment, < photoID >, < photoComment >>,
< Out, PhotoComment, ∅, < photoComment >>,
< In, PhotoComment, < photoID >, < photoComment >>,
< Rd, PhotoComment, < photoID >, < photoComment >>

}

35

Reasoning about
Networked Systems Models

Ontologies to formalize the semantics of
affordances and actionsaffordances and actions

Finite state processes to formalize the
behavior of affordances
• LTS semantics
• LTSA tool for automated model checking

36

19

FSP: Finite State Processes
END Predefined process, successfull termination
set S Denotes a set of action labels
[i : S] Binds the variable i to a value from S

Primitive Processes (P)
a → P Action prefix
a → P | b → P Choice
P;Q Sequential composition
P(X =' a) Parameterized process: P is described using parameter X

and modeled for a particular parameter value, P(a)
P/{new_1/old_1, …, new_n/old_n}

Relabeling
P \{a1, a2, …, an} Hiding
P +{ 1 2 } Al h b t t i

37

P +{a1, a2, …, an} Alphabet extension

Composite Processes (||P)
P||Q Parallel composition
forall [i : 1..n] P(i) Replicator construct: equivalent to the parallel composition
a : P Process labeling

SOAP-based Middleware Connector

SOAP

Role ClientSOAP = SOAP-RPCCall → SOAP-RPCReceiveReply → ClientSOAP

Role ServerSOAP = SOAP-RPCReceiveCall → SOAP-RPCReply → ServerSOAP

SOAP

38

GlueSOAP = SOAP-RPCCall → SOAP-RPCReceiveCall → GlueSOAP
| SOAP-RPCReply → SOAP-RPCReceiveReply → GlueSOAP

||ConnectorSOAP = ClientSOAP || GlueSOAP || ServerSOAP

See Work by D. Garlan et al. at CMU

20

C/S Photo Sharing over SOAP
- Application -

set SOAP_PhotoSharing_Actions =
{uploadPhoto, searchPhoto, downloadPhoto, downloadComment,
commentPhoto}

PhotoSharingConsumer = (req.searchPhoto → P1),
P1 = (req.downloadPhoto →P1 | req.commentPhoto → P1)

|req.downloadComment → P1 | terminate → END).
PhotoSharingProducer =

(req.uploadPhoto → PhotoSharingProducer | terminate → END).
PhotoSharingServer =

(prov.uploadPhoto → PhotoSharingServer
|prov.searchPhoto → PhotoSharingServer
|prov.downloadPhoto → PhotoSharingServer
|prov.commentPhoto → PhotoSharingServer
|prov.downloadComment → PhotoSharingServer | terminate → END).

39

C/S Photo Sharing over SOAP
- SOAP Middleware -

ClientSOAP (X =' op) =
(req.[X] → P1 | terminate → END),

P1 = (SOAP-RPCCall[X] →SOAP-RPCReceiveReply[X] → ClientSOAP)P1 = (SOAP-RPCCall[X] →SOAP-RPCReceiveReply[X] → ClientSOAP).

ServerSOAP (X =' op) =
(prov.[X] → P2 | terminate → END),

P2 = (SOAP-RPCReceiveCall[X] → SOAP-RPCReply[X] → ServerSOAP).

GlueSOAP (X =' op) =
(SOAP RPCCall[X] → P0 | terminate → END)(SOAP-RPCCall[X] → P0 | terminate → END),

P0 = (SOAP-RPCReceiveCall[X] → SOAP-RPCReply[X]
→ SOAP-RPCReceiveReply[X] → GlueSOAP).

40

21

C/S Photo Sharing over SOAP
- Photo Sharing System -

||SOAP_PhotoSharing = || _ g
(PhotoSharingProducer
|| PhotoSharingConsumer
|| PhotoSharingServer
|| (forall [op:SOAP_PhotoSharing_Actions] ServerSOAP (op))
|| (forall [op:SOAP_PhotoSharing_Actions] ClientSOAP (op))
|| (forall [op:SOAP_PhotoSharing_Actions] GlueSOAP (op))).

41

P2P Photo Sharing over LIME
- Application -

set Lime_PhotoSharing_Actions = {photoMetadata, photoFile, photoComment}

PhotoSharingPeer = (req.photoMetadata → ConsumerPhotoSharingPeer (req.photoMetadata Consumer
| prov.photoMetadata → Producer),

Producer = (prov.photoFile → PhotoSharingPeer),
Consumer = (req.photoFile →Consumer

| req.photoComment → Consumer
| prov.photoComment → Consumer
| req.photoFile → PhotoSharingPeer
| req.photoComment → PhotoSharingPeer
| prov.photoComment → PhotoSharingPeer
| terminate → END).

42

22

P2P Photo Sharing over LIME
- LIME Middleware -

Lime_Reader(X =' tuple) = (req.[X] → P1),
P1 = (rd[X] → Lime_Reader | rdp[X] → Lime_Reader | rdg[X] → Lime_Reader

| in[X] → Lime Reader | inp[X] → Lime Reader | ing[X] → Lime Reader| in[X] Lime_Reader | inp[X] Lime_Reader | ing[X] Lime_Reader
| terminate → END).

Lime_Writer(X =' tuple) = (prov.[X] → P2),
P2 = (out[X] → Lime_Writer | outp[X] → Lime_Writer

| outg[X] → Lime_Writer | terminate → END).

Lime_glue(X =' tuple) = (write[X] → P0 | outp[X] → P0 | outg[X] →P0
| terminate → END),

P0 = (rd[X] → P0 | rdp[X] → P0 | rdg[X] → P0
| in[X] → Lime_glue | inp[X] → Lime_glue | ing[X] → Lime_glue).

43

P2P Photo Sharing over LIME
- Photo Sharing System -

const NumberOfPeers = 2

||Lime_PhotoSharing =
([i : 1..NumberOfPeers]:PhotoSharingPeer

|| (forall [tuple:Lime_PhotoSharing_Actions] Lime_Writer(tuple))
|| (forall [tuple:Lime_PhotoSharing_Actions] Lime_Reader(tuple))
|| (forall [tuple:Lime_PhotoSharing_Actions] Lime_glue(tuple))).

44

23

Model-based Emergent Middleware
Synthesis

Affordance matching according to subsumption relationships
between concepts of the affordances
Interface mapping among the actions of the protocols to be
made interoperable according to their semantics
Checking whether protocols may successfully coordinate
according to the computed interface mapping

→Mediation connector that implements the computed→Mediation connector that implements the computed
interface mapping + message translation

45

Synthesis Process Overview

Interface

Non-Functional Properties

Affordance

Behavior

Networked System (NS2)
1. Affordance

Matching

Yes

Interface

Non-Functional Properties

Affordance

Behavior

Networked System (NS1)

2. Middleware
Abstraction

2. Middleware
Abstraction

3. Mapping
Generation

Mapping Processes

Middleware
Ontology

Application
Ontology

Middleware-agnostic Interface

Non-Functional Properties

Affordance

Middleware-agnostic Behavior

Networked System (NS2)

Middleware-agnostic Interface

Non-Functional Properties

Affordance

Middleware-agnostic Behavior

Networked System (NS1)

46

Adaptation
Compatible

Partially compatible
Not compatible 5. Abstract

Mediator
Synthesis

4. Behavioral
Matching

Mediator

Failure

24

1. Semantic Matching of Affordances

C D : a concept C is subsumed by a concept if the
set denoted by C is a subset of the set denoted by D

Aff1 = <Req, F1, I1, O1>, Aff2 = <Prov, F2, I2, O2>
Aff1 and Aff2 semantically match iff:
• F1 F2

• I2 I1I2 I1
• O1 O2

→Different from Liskov Substitution Principle

47

2. Abstracting Middleware

Towards an ontology of middleware
and

Related alignment of middleware functions

48

25

RPC Middleware

49

Shared Memory Middleware

50

26

Event-based Middleware

51

Message-based Middleware

52

27

Semantics of Middleware Functions

<ReceiveCall, a, I, ∅>

Middleware
Agnostic LTS

RPC Server LTS Event Publisher LTSMemory Writer LTS Message Sender LTS

Output action

<Reply, a, ∅, O>
<a, I, O>

RPC Client LTS Event Subscriber LTSMemory Reader LTS Message Receiver LTS

<a, I, O>

<Write, a, ∅, O>

<Read, a, I, O>

<Publish, a, ∅, O>

<Subscribe, a, ∅, ∅>

<SendMessage, a, ∅, O>

<ReceiveMessage, a, ∅, O>

Input action

R i R l ∅ O

<Call, a, I, ∅>

53

<GetEvent, a, ∅, O> (*)

= MethodName
= Arguments
= ReturnValue

= DataChannel
= Data
= Data

= EventType
= Event

= MessageChannel
= Message

a
I
O

a
I
O

a
O

a
O

(*) Considers transient subscription only

<ReceiveReply, a, ∅, O>

From SOAP to
RPC C/S Photo Sharing

Client (X='op1)= (req.[X] → P1),
P1 = (call[X] → receiveReply[X] → Client([] p y[]

| terminate → END).

Server (X='op2)= (prov.[X] → P2),
P2 = (receiveCall[X] → reply[X] → Server

| terminate → END).

RPC_glue (X='op) = (call[X] → P0 | terminate → END),
P0 = (receiveCall[X] → reply[X] → receiveReply[X]

→ RPC_glue).

54

28

RPC-based Photo Sharing
LTS Semantics

<Call, Authenticate, login, φ >

<Call, SearchPhotos, photoMetadata, φ >

< ReceiveReply SearchPhotos φ photoMetadataList>

II) Photo-Sharing ConsumerI) Photo-Sharing Producer

<Call, UploadPhoto, {authenticationToken, photo}, φ >
<Call, DownloadPhoto, photoID, φ >

<Call, CommentPhoto, photoComment, φ >

<ReceiveCall, SearchPhotos, photoMetadata, φ>
<Reply SearchPhoto φ photoMetadataList>

<ReceiveCall, DownloadPhoto, photoID, φ>
<Reply DownloadPhoto φ

<ReceiveCall, CommentPhoto, photoComment, φ><Reply, CommentPhoto, φ, acknowledgement >

< ReceiveReply, SearchPhotos, φ, photoMetadataList>

< ReceiveReply, DownloadPhoto, φ, photoFile>

< ReceiveReply, CommentPhoto, φ, acknowledgement >

< ReceiveReply, UploadPhoto, φ, acknowledgement>

< ReceiveReply, Authenticate, φ, authenticationToken>

55

<Reply, SearchPhoto, φ, photoMetadataList>

<ReceiveCall, Authenticate, login, φ>

<Reply, DownloadPhoto, φ,
photoFile>

<Reply, Authenticate, φ, authenticationToken>

<ReceiveCall, UploadPhoto, {photo, authenticationToken}, φ>

<Reply, UploadPhoto, φ, acknowledgement>

<Reply, Authenticate, φ, authenticationToken>

<Reply, UploadPhoto, φ, acknowledgement>
III) Photo-Sharing Server

To Middleware Agnostic
C/S Photo Sharing

Client (X='op1) = (req.[X] → P1),
P1 = (input[X] → Client | terminate → END)P1 (input[X] → Client | terminate → END).

Server (X='op2) = (prov.[X] → P2),
P2 = (output[X] → Server | terminate → END).

RPC_glue (X='op) =

56

_g (p)
(output[X] → P0 | terminate → END),

P0 = (input[X] → RPC_glue).

29

Middleware Agnostic C/S Photo Sharing
LTS Semantics

<Authenticate, login, authenticationToken> <SearchPhotos, photoMetadata, photoMetadataList>

II) Photo-Sharing ConsumerI) Photo-Sharing Producer

<UploadPhoto, {authenticationToken, photo}, acknowledgement>
<DownloadPhoto, photoID, photoFile>

<CommentPhoto, photoComment, acknowledgement >

<SearchPhotos, photoMetadata, photoMetadataList ><DownloadPhoto, photoID, photoFile>

<A thenticate login a thenticationToken>

<CommentPhoto, photoComment, acknowledgement>

57

<Authenticate, login, authenticationToken>

III) Photo-Sharing Server

<UploadPhoto, {photo, authenticationToken}, acknowledgement>

From Lime to Shared Memory
P2P Photo Sharing

Reader(X =' data) = (req.[X] → P1),
P1 = (read[X] → Reader | terminate → END).([] |)

Writer(X =' data) = (prov.[X] → P2),
P2 = (write[X] → Writer | terminate → END).

SM l (X ' d t) (it [X] P3 | t i t END)SM_glue(X =' data) = (write[X] → P3 | terminate→END),
P3 = (read[X] → SM_glue).

58

30

Shared Memory P2P Photo Sharing
LTS Semantics

<Write, PhotoMetadata, φ, photoMetadata>

<Write, PhotoFile, φ, photoFile>

<Read, PhotoFile, photoID, photoFile>

<Read, PhotoMetadata, photoMetadata, photoMetadataList>

<Write, PhotoComment, φ, photoComment>

<Read, PhotoComment, photoID, photoComment>

59

… to Middleware Agnostic
P2P Photo Sharing

Reader(X =' data) = (req.[X] → P1),
P1 = (input[X] → Reader | terminate → END).

Writer(X =' data) = (prov.[X] → P2),
P2 = (output[X] → Writer | terminate → END).

SM glue(X =' data) =SM_glue(X = data) =
(output[X] → P | terminate → END),

P = (input[X] → SM_glue).

60

31

Middleware Agnostic P2P Photo Sharing
LTS Semantics

<PhotoMetadata, φ, photoMetadata>

<PhotoFile, φ, photoFile>

<PhotoFile, photoID, photoFile>

<PhotoComment, φ, photoComment >

61

<PhotoComment, photoID, photoComment>

3. Interface Mapping

Solving behavioral mismatches for input and output
actions
• Input actions must be synchronized with output actions
• Associated mediator synthesis known as a computationally

hard problem
• Focus on basic mediation patterns

• Ordering mismatches
• Extra output actionsp
• Extra input actions
• Splitting of actions
• Merging of actions

62

32

A Tractable Approach

Ordering mismatch
• Causally independent actions as concurrent actionsy p

Extra output actions discarded
Extra input actions not considered yet
Splitting of input action into a number of output
actions according to the semantics of actions
Merging of output actions as a dual to the
splitting of input actions

63

Splitting Input Action

<a, Ia, Oa>, I) splits into
{<<bi, Ii, Oi> ∈ I>i=1..n |

a ∪i {bi}
Ii ≤ n (∪j<i {Oi}) ∪ {Ia}
Oa (∪j<i {Oi}) ∪ {Ia}

}

64

33

Computing Interface Mapping

MapI(IA1
, IA2

) = ∪<a, I, O>∈IA1
{<a, I, O> → map(<a, I, O>, IA2

)} ∪
∪<a’, I’, O’>∈IA2

{<a’, I’, O’> → map(<a’, I’, O’>, IA1
)}

with:
map(<a, Ia, Oa>, I) = {<<bi, Ii, Oi> ∈ I>i=1..n |

a ∪i {bi}
Ii ≤ n (∪j<i {Oi}) ∪ {Ia}
Oa (∪j<i {Oi}) ∪ {Ia}

65

}
and:
∀seq1 ∈ map(<a, Ia, Oa>, I), seq2 ∈ map(<a, Ia, Oa>, I) | seq2 < seq1

Interface Mapping between
Photo Sharing Systems

Map(Int’photo sharing consumer, Intphoto sharing)= {
< SearchPhotos,< photoMetadata >,< photoMetadataList >>
→ {<< PhotoMetadata φ < photoMetadata >>>}→ {<< PhotoMetadata,φ,< photoMetadata >>>},
< DownloadP hoto,< photoID >,< photoFile >>
→ {<< PhotoFile, φ,< photoFile >>>},
< CommentPhoto,< photoComment >,< acknowledgment >>
→ {<< PhotoComment, ,,< photoComment >>>},
< DownloadComment,< photoID >,< photoComment >>
→ {<< PhotoComment, φ,< photoComment >>>},
< PhotoComment < photoID > < photoComment >> φ< PhotoComment,< photoID >,< photoComment >> → φ,
< PhotoMetadata,< photoMetadata >,< photoMetadataList >> → φ,
< PhotoFile,< photoID >,< photoFile >> → φ
}

66

34

4. Behavioral Matching

Must ensure that networked systems are able to
synchronize
• According to the matching of respective actions
• Possibly mediated according to supported mediation

patterns, i.e., computed interface mapping

→ Mediated matching that amounts to a base model
checking problemchecking problem

P1 || M1 ≤ P2 || M2

with ≤ denoting trace refinement and A1 req A2

67

Reasoning about Mediated Matching

Inclusion of LTS traces as the basis

Behavioral matchmaking under:
mapping of semantic-based actions

68

mapping of semantic-based actions
Leveraging the rich SOTA on protocol conversion/mediation

since the 80s

35

Interoperable Systems at
Abstract Level

<PhotoMetadata, φ, photoMetadata>

<PhotoFile, φ, photoFile>

<PhotoFile, photoID, photoFile>

<PhotoComment, φ, photoComment >

69

<PhotoComment, photoID, photoComment>

<SearchPhotos, photoMetadata, photoMetadataList>

<DownloadPhoto, photoID, photoFile>

<CommentPhoto, photoComment, acknowledgement >

5. Mediator Synthesis
Adaptation processes:
Ma = (||i Processes that merge/split A1 actions)

M = b’ → → b’ → a → MMai = b 1→ … → b n → ai → Mai

Mb’ = (||i Processes that consume extra output actions of A2)
Mb’i = b’1→ Mb’i

Ma’ = (||i’ Processes that merge/split A2 actions)
Mb = (||i Processes that consume extra output actions of A1)

Behavioral matching under mediation:
P1 || M || Mb’ ≤ P2 || M ’ || Mb where A1 A2 and A1 req A2P1 || Ma || Mb’ ≤ P2 || Ma’ || Mb where A1 A2 and A1 req A2

Emergent connector:
Ma || Mb’ || Ma’ || Mb

70

36

Back to the Synthesis Process Overview

Interface

Non-Functional Properties

Affordance

Behavior

Networked System (NS2)
1. Affordance

Matching

Yes

Interface

Non-Functional Properties

Affordance

Behavior

Networked System (NS1)

2. Middleware
Abstraction

2. Middleware
Abstraction

3. Mapping
Generation

Mapping Processes

Middleware
Ontology

Application
Ontology

Middleware-agnostic Interface

Non-Functional Properties

Affordance

Middleware-agnostic Behavior

Networked System (NS2)

Middleware-agnostic Interface

Non-Functional Properties

Affordance

Middleware-agnostic Behavior

Networked System (NS1)

71

Adaptation
Compatible

Partially compatible
Not compatible 5. Abstract

Mediator
Synthesis

4. Behavioral
Matching

Mediator

Failure

From Abstract Mediator to
Concrete Emergent Middleware

Networked System 1

Application 1

Middleware 1

Networked System 2

Application 2

Middleware 2
Listener 2

Actuator 2

Listener 1

Actuator 1

Emergent Middleware

Concrete Mediator

72

37

Approaches to Middleware Synthesis

Still a long way to go…

• Need to have available adequate networked system models
• Effective, yet efficient mediator synthesis
• From/to Abstract mediator to/from Concrete CONNECTor

73See. Work by David Bromberg (U. Bordeaux) and P. Grace (Lancaster U.)

Meeting the Challenge of Interoperability
in Pervasive Networks - Outline

Interoperability in complex distributed systems

Emergent middleware synthesis

The CONNECT architecture enabling emergent

middleware

ConclusionsConclusions

74

38

The CONNECT Architecture of Enablers

75

Meeting the Challenge of Interoperability
in Pervasive Networks - Outline

Interoperability in complex distributed systems

Emergent middleware synthesis

The CONNECT architecture enabling emergent

middleware

ConclusionsConclusions

76

39

Composing Pervasive Systems

State-of-the art survey in
iddl & d tmiddleware & data

interoperability shows that no
current approach meets today’s
interoperability challenge

Need for emergent middleware
where connectors are

77

synthesized on the fly

Synthesizing CONNECTors for
Pervasive Systems

• CONNECTors implementing emergent
middleware that mediate interactions among
pervasive networked systemspervasive networked systems

• Formalization of interoperability based on
matching and mapping relationships between
interaction protocols run by networked
systems

• Dealing with application- and middleware-layer
t

78

connectors

• Further challenge of enforcing non-functional
properties

40

What we have learned so far…

Middleware research increasingly multi-
disiciplinarydisiciplinary
• Middleware and Ontology
• Middleware and Learning
• Middleware and Abstract models

Opens several research challenges

79

To Know more…

The 11th International School on Formal Methods for the
Design of Computer, Communication and Software Systems:
C t f Et l N t k d S ft S t LNCSConnectors for Eternal Networked Software Systems. LNCS
6659, Springer 2011, ISBN 978-3-642-21454-7.

http://connect-forever.eu/publication.html
http://connect-forever.eu/software.html
http://connect-forever eu/training htmlhttp://connect forever.eu/training.html

http://connect-forever.eu/

80

41

Thank you

Q ti ?Questions?

